A 12-week project in Speech Coding and Recognition
نویسنده
چکیده
منابع مشابه
Speech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions
Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...
متن کاملProgress Report of a Project in Very Low Bit-rate Speech Coding
Background work in various levels of speech coding is reviewed, including unconstrained coding and recognition-synthesis approaches that assume the signal is speech. A pilot project in HMM-TTS based speech coding is then described, in which a comparison with harmonic plus noise modelling is also done. Results of the demonstration project including samples of speech under various transmission si...
متن کاملFuzzy Clustering Approach Using Data Fusion Theory and its Application To Automatic Isolated Word Recognition
In this paper, utilization of clustering algorithms for data fusion in decision level is proposed. The results of automatic isolated word recognition, which are derived from speech spectrograph and Linear Predictive Coding (LPC) analysis, are combined with each other by using fuzzy clustering algorithms, especially fuzzy k-means and fuzzy vector quantization. Experimental results show that the...
متن کاملCompression for Speech Recognition and Music Classification
One of the goals of this project is to develop methods for compressing speech signals for a distributed speech recognition task. The objective of current speech compression techniques is to minimize perceptual distortion. In this project, however, we investigate efficient compression techniques that achieve low bit rate transmission, while incurring a minimal degradation of automatic speech rec...
متن کاملA Comparative Study of Gender and Age Classification in Speech Signals
Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008